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Abstract 
The characterization of phenotypes in cells or organisms from microscopy data largely 

depends on differences in the spatial distribution of image intensity. Multiple methods exist 

for quantifying the intensity distribution - or image texture - across objects in natural images. 

However, many of these texture extraction methods do not directly adapt to 3D microscopy 

data. Here, we present Spherical Texture extraction, which measures the variance in intensity 

per angular wavelength by calculating the Spherical Harmonics or Fourier power spectrum 

of a spherical or circular projection of the angular mean intensity of the object. This method 

provides a 20-value characterization that quantifies the scale of features in the spherical 

projection of the intensity distribution, giving a different signal if the intensity is, for example, 

clustered in parts of the volume or spread across the entire volume. We apply this method to 

different systems and demonstrate its ability to describe various biological problems through 

feature extraction. The Spherical Texture extraction characterizes biologically defined gene 

expression patterns in Drosophila melanogaster embryos, giving a quantitative read-out for 

pattern formation. Our method can also quantify morphological differences in Caenorhabditis 

elegans germline nuclei, which lack a predefined pattern. We show that the classification of 

germline nuclei using their Spherical Texture outperforms a convolutional neural net when 

training data is limited. Additionally, we use a similar pipeline on 2D cell migration data to 

extract the polarization direction and quantify the alignment of fluorescent markers to the 

migration direction. We implemented the Spherical Texture method as a plugin in ilastik to 

provide a parameter-free and data-agnostic application to any segmented 3D or 2D dataset. 

Additionally, this technique can also be applied through a Python package to provide extra 

feature extraction for any object classification pipeline or downstream analysis.

Author summary
We introduce a novel method to extract quantitative data from microscopy images by 
precisely measuring the distribution of intensities within objects in both 3D and 2D. This 
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method is easily accessible through the object classification workflow of ilastik, provided 
the original image is segmented into separate objects. The method is specifically designed 
to analyze the convex region in objects, focusing on the variation in fluorescence intensi-
ty caused by differences in their shapes or patterns.

We demonstrate the versatility of our method by applying it to very different biological 
samples. Specifically, we showcase its effectiveness in quantifying the patterning in D. 
melanogaster embryos, in classifying the nuclei in C. elegans germlines, and in extracting 
polarization information from individual migratory cells. Through these examples, we 
illustrate that our technique can be employed across different biological scales. Further-
more, we highlight the multiple ways in which the data generated by our method can be 
used, including quantifying the strength of a specific pattern, employing machine learn-
ing to classify diverse morphologies, or extracting directionality or polarization from 
fluorescence intensity.

Introduction
Patterns are widespread in nature and can be observed across scales from subcellular 
to tissue and organism level. The complex interactions and mechanisms that underlie 
pattern formation processes are a topic of great interest in various fields [1]. On a tissue- 
or cellular-scale, pattern formation is captured through 2D or 3D microscopy. Analyzing 
patterns in such images requires specific image analysis tools. One such class of analysis 
tools is texture extraction tools that describe the pattern, or generally, the morphology 
of biological systems, in microscopy images as a texture: the variation in signal intensity 
across an image [2]. Several different methods to extract texture information from images 
currently exist [2,3]. However, many of these methods rely on 2D natural images and 
cannot readily be applied to 3D biological microscopy data. Additionally, with the recent 
rise in accessible 3D microscopy segmentation methods [4–6], the number of applications 
in biology for accessible texture extraction from 3D data has risen. This need is shown by 
the various solutions using frequency space quantification for cell-cortical intensity [7] 
and cell shape [8].

For many biological systems, understanding and quantifying the 3D morphology 
throughout the object is essential for gaining new insights into different processes. For 
example, well-described developmental pattern formation, such as those arising during 
Drosophila melanogaster embryogenesis, are regulated by complex gene regulatory net-
works. The gene shavenbaby (svb) produces a striped expression pattern in the epidermis of 
the embryo, which later induces the formation of trichomes [9]. Molecular changes in the 
upstream enhancers of svb have been shown to perturb the expression pattern, which can 
shape morphological evolution [10] (Fig 1A). To understand the phenotypic effects caused 
by sequence variations in regulatory elements, it is essential to analyze deviations from the 
typical wild-type expression pattern. Image texture can also provide biological information 
in systems where the pattern is not predefined but an emergent result of mechanical factors. 
A prime example here is the different chromatin morphologies that characterize the different 
substages of meiotic prophase I. These distinct substages, along with their corresponding 
DNA morphologies, are easily identified in the germline of the nematode C. elegans (Fig 1B). 
As these varied morphologies directly correspond to the underlying molecular processes, 
any discrepancies in the spatial distribution of these morphologies can serve as indicators for 
detecting defects in meiotic timing [11].
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Although their overall appearance is highly distinct, both the morphology of a fly embryo 
and of nematode meiotic nuclei can be described as a radial variance in fluorescence texture 
from their center of mass, allowing for robust quantitative analysis.

In this paper, we present a texture extraction tool for segmented microscopy data through 
frequency analysis of radial variation of image intensity. Our analysis focuses on the convex 
portion of the object, assuming that the analyzed objects are mostly, but not strictly, convex, 
which is true for many biological systems and has been a basic assumption for other algo-
rithms [6]. We show that our texture extraction method can detect patterns in D. melanogaster 
embryos and distinguish different morphologies in C. elegans nuclei. Simple machine learning 
models trained with this feature perform as well in the classification of C. elegans germline 
nuclei as convolutional neural network models, while being faster to train. We also include a 
2D implementation that allows us to quantify the actin leading edge of cultured cells and gives 
options for subsequent signal analysis for directionality mapping.

To make this method accessible, the method is implemented as a plugin for the user-
friendly graphical software ilastik [4]. Our implementation allows users to combine the Spher-
ical Texture feature with other image features and quickly assemble a simple Random Forest 
classifier, which can be interactively trained within the program.

Design and Implementation
In C. elegans, the condensation and organization of chromatin in the nucleus changes 
throughout meiosis. The nucleus shown in Fig 2A is in pachytene, where pairs of homologous 
chromosomes are fully aligned as they perform the essential meiotic task of crossover forma-
tion. A typical 2D visualization of a 3D microscopy dataset is the maximum intensity projec-
tion over the Z-axis as shown in Fig 2A. This projection loses detail in depth, especially with 
data such as these nuclei, where chromosomes are radially oriented along the nuclear enve-
lope, avoiding a large central nucleolus. Because we observe that the radial organization of the 
signal explains most of the variation in the data, we map the data to a sphere. This mapping 
is achieved by first rescaling the data to a cube of 80 pixels per side (Fig 2B). We subsequently 

Fig 1.  Patterns and image texture reflect biological spatial variability. A) Expression patterns of a lacZ reporter gene controlled by three 
different variants of the E3N enhancer: wild-type E3N, showing the expected striped ventral ‘shavenbaby’ phenotype patterning, the E3N mutant 
10.1 with 10 mutations in E3N, with impaired patterning, and the E3N mutant 10.2 with 10 other mutations in E3N that lacks the patterning. 
These phenotypes reflect how random mutations disrupt the regulatory capacity of the E3N enhancer. B) C. elegans germline nuclei change DNA 
morphology during meiotic prophase I. The cells remain in the proliferative zone, showing small DAPI patches until they complete meiotic 
S-phase. In the transition zone, the chromatin is clustered as homologous chromosomes pair and co-align through synapsis. They then separate 
into strands of paired homologs in pachytene, as they designate the locations of crossovers, which are recombination events between maternal 
and paternal DNA.

https://doi.org/10.1371/journal.pcbi.1012349.g001

https://doi.org/10.1371/journal.pcbi.1012349.g001
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Fig 2.  Spherical Texture method design. A) A C. elegans meiotic nucleus in the pachytene stage, stained with DAPI, shown as maximum intensity projec-
tions over Z (left) and X, with the YZ view rescaled isotropically (center) and to square pixels (right) about the XY view. B) Data from A rescaled to 80x80x80 
pixels in XY (left) and YZ (right) views. C) A graphic showing the mean intensity projection to spherical space, showing first a subset of the radial rays (left, 
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cast rays from the center of the cube, taking the mean intensity of the pixels along the ray. 
This transformation yields a dataset of the average data in spherical coordinates, the spherical 
projection. To compare different objects, we also normalize the spherical projection map such 
that the total variance is 1 and the mean is 0 (Fig 2C).

The spherical projection represents a meaningful dimension reduction while keeping the 
variation that defines the radial signal. To extract texture information from the spherical pro-
jection, we apply a Spherical Harmonics (SH) decomposition, a transformation to frequency 
space that is analogous to a Fourier decomposition. We decompose the spherical projection 
into a sum of waves (the spherical harmonics basis functions). These waves are a combination 
of relative scale (harmonic degree, ℓ) in different conformations (defined by harmonic order, 
m) (Fig 2D) up to the scale of 1-pixel differences (ℓ = 251). By integrating over all harmonic 
orders of the signal, we get a power spectrum with a single rotationally invariant value for 
each degree (Fig 2E). By normalizing to a mean of 0, the power corresponds to the variance 
as a function of ℓ [12]. Therefore, the power spectrum can be reinterpreted as a measure of 
variance versus the approximate wavelength of each harmonic degree (Fig 2F). Furthermore, 
through normalizing the projection to unit variance, the area under the curve of the Spher-
ical Texture output equals 1. This transformation provides an interpretable and comparable 
output: the prominence of patterns at different angular scales in the data are represented as 
the normalized variance per angular wavelength, where variances at larger wavelengths reflect 
coarser structures and variances at lower wavelengths reflect finer structures (Fig 2G, insets). 
The method is also illustrated in S1 video.

For accessibility, we implemented the technique as a plugin for ilastik [4], allowing users to 
quickly select the Spherical Texture features for a Random Forest object classification algorithm. 
To reduce the number of features to a more relevant set, we subsample the spectrum to 20 
values along the log2 axis in this implementation for further analysis (Fig 2G and 2H). Here, we 
bin these values by integrating, which ensures that the area under the curve remains equal to 1.

Results
To test the ability of the Spherical Texture technique to extract textures, we used synthetic data 
generated with Perlin 3D noise (Fig 3A). This synthetic data allows us to create 3D patterns 
at varying spatial scales. Assessing these test patterns with the Spherical Texture method 
yields a quantification that shows how much each spatial scale contributes to the variance. 
Thus, we expect the fine patterns to have more power at small wavelengths, while the coarser 
patterns have the most power at larger wavelengths. Indeed, as the synthetic data gets coarser, 
the spectra of the Spherical Texture method shift from shorter wavelengths (black) towards 
longer wavelengths (light gray) (Fig 3A). Additionally, we can use synthetic data to assess the 

red lines) used to generate the mean-intensity spherical projection as spherical data and as planar map projection (center). The mean intensities are normal-
ized to mean=0 and variance=1 (right). D) Projections of the spherical harmonics basis functions on the sphere of the first 7 spherical harmonic degrees. 
E) The spherical harmonics power spectrum of the spherical projection in C shows a distinct peak around approx. the 10th harmonic degree. F) Rescaling 
the harmonic degrees to approximate wavelength yields a spherical harmonics spectrum, which shows a corresponding peak in the contribution to variance 
around a wavelength of approx. 0.1 rad/2π. G) The standard output of the Spherical Texture method corresponds to the binned spectrum shown in F. Insets 
show the spherical projection band-passed to fine, medium and coarse wavelengths, as indicated by dashed lines in the spectrum (7th and 27th harmonic 
degree). The band-passed regions reflect the part of the signal quantified by each region of the plot, where the region that shows high variance in the quan-
tification corresponds to the scale of the most prominent signal in the data (here: chromosomes, note that this region alone already resembles the spherical 
projection shown in C). H) The Spherical Texture extraction is implemented as a Python package and it is directly available in ilastik, allowing for its adoption 
into the Object Classification workflow. In this workflow, users can interactively train a Random Forest machine learning classifier. Shown here is a part of a 
C. elegans gonad with segmented nuclei, where some nuclei were labeled as Class 1 and others as Class 2 (solid colors). Based on the Spherical Texture of these 
labels, ilastik predicts the class of all other nuclei (transparent colors).

https://doi.org/10.1371/journal.pcbi.1012349.g002

https://doi.org/10.1371/journal.pcbi.1012349.g002
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Fig 3.  The Spherical Textures reflect the coarseness of 3D data and can be applied to quantify patterning in D. 
melanogaster embryos. A) Spherical Textures of synthetic 3D Perlin noise spheres. Coarser data corresponds to more 
variance at large wavelengths. B) Graphic showing the design of the mutant E3N enhancer screen and genetic setup. 
Wild-type E3N drives the expression of a lacZ reporter gene in a striped pattern in the D. melanogaster embryo. By 
introducing mutations in the enhancer via error-prone PCR, the effect of many variants on the activity of the E3N 
enhancer can be tested by screening for changes in this pattern. C) Spherical Texture responses of embryos of three 
genotypes of the assay in B. The WT embryo (n=13) shows a distinctive average profile with a peak at λ ≈ 0.044 (red 
arrow), which is lost in the E3N-10.2 (n=17). The E3N-10.1 (n=18) with impaired patterning shows an intermediate 
profile. D) Average profiles of all genotypes in the screen, clustered by number of mutations. The red dashed line is 
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effect of different shapes, sizes, anisotropy, and placement of the signal (S1A-D Fig). Here, 
we see that the Spherical Texture quantifies the scale of a pattern versus the scale of the object 
and the radial localization of the signal. In effect, the Spherical Texture spectrum is relatively 
insensitive to shape (S1A Fig) or anisotropy (S1C Fig) but changes with object size or pattern 
scale (S1B Fig and Fig 3A) and placement of the signal (S1D Fig). Notably, rescaling objects to 
80x80x80 pixels (Fig 2B) results in a finite resolution, meaning finer patterns, such as those at 
scale 2 in S1B Fig, may be lost. While this standard rescaling is necessary for fast and user-
friendly Spherical Texture analysis, we also provide a Python API that allows users to adjust 
the rescaling to suit specific datasets (see Methods).

We next tested the ability of the Spherical Texture method to distinguish morphological 
differences in 3D microscopy images. In D. melanogaster, the minimal E3N enhancer drives 
shavenbaby (svb) expression in the ventral stripes of the embryo at developmental stage 15. To 
dissect the regulatory activity encoded in this enhancer, Fuqua et al. [13] created a transgenic 
D. melanogaster library harboring random mutants of the E3N enhancer. The mutants were 
generated via error-prone PCR, and their activity is actualized by a downstream promoter 
(hsp70) and reporter gene (lacZ) (Fig 3B). To further characterize this mutational library, 
a subset of 91 lines ranging from 1-10 mutations were imaged using fluorescent antibodies 
and confocal microscopy to study the patterns in more detail [14]. However, the analysis of 
high-throughput data requires an accurate and automated assessment of pattern formation. 
For this, the Spherical Texture can serve as a reliable metric. When applied to both a wild-type 
E3N reporter and two unique variants of E3N each harboring 10 point mutations (10.1 and 
10.2), the Spherical Texture method distinctly differentiates between the mutants and the WT 
E3N control: the WT shows a characteristic profile, with a peak in variance at a wavelength 
λ ≈ 0.044 rad/2π. This peak is diminished in E3N-10.1 embryos which showcase less defined 
stripes, and it is virtually absent in E3N-10.2 embryos, which lost all stripe formation (Fig 3C). 
We can thus effectively analyze the complete high-throughput screening data and assess the 
degree of pattern formation in 91 different lines (Fig 3D-E). Our analysis reveals an abrupt 
decline in pattern formation fidelity from the WT strain to any of the mutated strains. How-
ever, the introduction of more than three mutations does not reveal a discernible trend. This 
finding suggests that the exact number of mutations (up to 10) does not define the regulatory 
capacity of this minimal enhancer, and some mutations may rescue other mutations in an 
epistatic manner.

Classification of meiotic nuclei
To showcase a very different type of biological data, we turn to C. elegans germline nuclei. 
While the D. melanogaster embryos are large (500 µm diameter) and the pattern of the E3N 
enhancer is clearly defined, the C. elegans germline nuclei are very small (2-5 µm diameter) 
and lack a defined pattern. However, as the Spherical Texture is agnostic to the original size 
of the object but quantifies the scale of the morphology, we hypothesized that this method 
should also distinguish morphological differences in C. elegans germline nuclei.

C. elegans germline nuclei are typically categorized into three morphological stages: Pro-
liferative zone nuclei are relatively small with chromatin distributed across the nucleus. The 

the characteristic WT wavelength, with a plane wave at the same wavelength (λ = 0.044/object length) shown as a 
simplified interpretation of the wavelength. This plane wave corresponds to the distance between the stripes (inset, 
red stripes). E) The effect of different E3N enhancer variants on the gene expression pattern is described by taking 
the average power at λ ≈ 0.044 rad/2π for all genotypes. Separate dots are separate experiments for WT, and separate 
genotypes for mutants.

https://doi.org/10.1371/journal.pcbi.1012349.g003

https://doi.org/10.1371/journal.pcbi.1012349.g003
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proliferative nuclei are mitotically dividing stem cells, generating meiotic progenitor cells. 
These nuclei undergo significant remodeling as they enter meiotic prophase I: the chromo-
somes are partially condensed and polarized within relatively small “Transition Zone” nuclei, 
resulting in a crescent-shaped and dense distribution of DNA. This morphological stage is 
indicative of the meiotic stages involving homologous chromosome pairing and synapsis. 
After completion of synapsis, nuclei enter the pachytene stage which is characterized by larger 
nuclei and separated chromosome strands representing partially condensed and synapsed 
homologous chromosome pairs [11]. If we apply the Spherical Texture method to these nuclei, 
we find that, indeed, the Spherical Texture spectra represent the differences between these 
three morphological classes (Fig 4A). Notably, the transition zone nuclei, where chromosomes 
form a large crescent-shaped structure, exhibit significantly increased variance at λ = 1 rad/2π, 
which implies the chromatin is organized into a half-moon-like organization. This matches 
the canonical description of crescent-shaped DNA morphology. For pachytene nuclei, a local 
peak in the spectrum is observed around λ = 0.1 rad/2π, which we infer to reflect a typical 
distance of separation between chromosomes in the nucleus (Fig 4A). Importantly, these dis-
tinctions between classes remain robust relative to the noise in the image, which mostly affects 
features at shorter wavelengths (S2A-B Fig). Thus, the Spherical Texture method accurately 
describes differences in the nuclear morphology of nuclei in the distal germline of C. elegans.

We then utilized the differences identified in the Spherical Texture spectra to classify the 
different stages of nuclei within the C. elegans distal germline. To achieve this, we used a 
machine-learning approach by training a Random Forest classifier. Random Forest classifiers 
are simple and minimal to set up, and implemented in available software such as ilastik, pro-
viding user-friendly interactive image classification and analysis [4]. We included the Spherical 
Texture spectrum (Fig 2G) and the original size of the nuclei as features. We compared this 
Spherical Texture classification to a Random Forest using the ilastik histogram of intensities 
and nucleus size as a feature set, or a more complex convolutional neural network model, a 
3D ResNet18 [15], that learns a feature set from the 3D segmented nuclei. After training on 10 
different annotated images containing over 1400 annotations, we found that all models had 
similar levels of accuracy. However, the ResNet was the most consistent among them (Fig 4B).

In bioimaging, the amount of training data is often limiting, as experimental techniques, 
the time required for annotation, and the inconsistency in experimental conditions all hinder 
the generation of comprehensive and consistent training datasets. Consequently, the efficiency 
of model training becomes a critical consideration. We systematically shuffled and subsam-
pled our training set by the number of images and included objects, generating smaller subsets 
of our cross-validation dataset. By creating these smaller subsets, we were able to investigate 
how well the models learn to classify germline nuclei when training data is limited (Figs 4C 
and S2C). This analysis reveals that the Spherical Texture model exhibits fast and consistent 
training that improves monotonically with increasing training data size. The Histogram of 
intensity model also trains rapidly, but the accuracy declines as more data is added from a 
limited number of images. This decline is likely due to highly sample-specific variations in 
fluorescence intensities which can lead to overfitting when only training on a small set of 
images. In contrast, the ResNet model, while accurate when trained on the full dataset, was far 
less accurate when provided with less training data, which is consistent with evaluations of 2D 
ResNet models [16].

We can now leverage the Spherical Texture model for germline classification to assess 
meiotic staging in the C. elegans gonad. This is feasible due to the temporo-spatial organiza-
tion of the C. elegans gonad, wherein nuclei progress through the gonad while undergoing 
meiosis. Thus, the nuclei are separated into phenotypic zones [11]. Traditionally, the manual 
annotation of these zones relies on marking the transition points where most nuclei change 
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Fig 4.  Spherical Textures and machine-learning classifications of C. elegans germline nuclei. A) Spherical Texture 
spectra for manually classified wild-type C. elegans germline nuclei show characteristic differences for each class. B) 
Classification accuracies of machine learning models classifying all annotated nuclei in one test image, trained on all 
annotated nuclei from 10 images. The Spherical Texture model is a Random Forest with the Spherical Texture and size 
in pixels as features. The Histogram of intensity model is a Random Forest with a 64-valued normalized histogram of 
intensity values and size in pixels as features. The ResNet18 is a 3D CNN with unscaled 0-padded normalized nuclei 
at original scale as input. The models behave similarly, but the ResNet slightly outperforms the Random Forest mod-
els as expected. Stated p-values are from a Wilcoxon one-sided paired test, testing for accuracy greater than Spherical 
Texture. C) The classification accuracy increases with increasing amount of training data for the three models. The 
color denotes the number of images used for training, and the x-axis represents the fraction of nuclei from each these 
images. Only the Spherical Texture trains monotonically and quickly, while the Histogram of intensity overfits with 
few images, and the ResNet requires a large amount of training data to reach high accuracy.

https://doi.org/10.1371/journal.pcbi.1012349.g004

https://doi.org/10.1371/journal.pcbi.1012349.g004
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morphology (Fig 5A). However, this approach becomes challenging, and at times biased, 
especially when genetic defects give rise to gradual transitions. We therefore use the Spherical 
Texture model, consisting of a Random Forest trained using the Spherical Texture spectrum 
and nucleus size as features to predict the stages of nuclei in germlines of wild-type animals 
(Fig 5A, higher resolution in S3 Fig). Indeed, we find that the Spherical Texture classifications 
of individual nuclei of wild-type germlines mostly match the zones expected from the overall 
germline organization: nuclei in the distal (here shown left) part of the gonad are classified 
as “proliferative zone” nuclei, moving proximally to first transition zone and then pachytene 

Fig 5.  Automatic classification of germline nuclei provides quantifications of meiotic progression. A) Repre-
sentative images of C. elegans gonads of three genotypes (Wild-type, zim-2, syp-4) with manually annotated zones, 
and automatic classifications of nuclear morphology using the Spherical Texture Random Forest model per nucleus. 
Higher resolution images are available in S3 Fig. B) Bulk analysis of Spherical Texture annotations in gonads reveals 
average zone sizes along the linearized gonad. The relative density distribution of nuclei per morphological classifi-
cation is plotted along the gonad central spline. The point where the means of the zones cross are annotated (dashed 
lines) to compare against the manual annotations of these transition points.

https://doi.org/10.1371/journal.pcbi.1012349.g005

https://doi.org/10.1371/journal.pcbi.1012349.g005
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nuclei. However, as the nuclei exit the transition zone and shift to early pachytene, some early 
pachytene nuclei are misclassified as “proliferative zone” nuclei. This finding suggests that the 
Spherical Texture model not only identifies the three canonical zones but also detects morpho-
logical differences between nuclei in early and mid/late pachytene.

Due to the temporo-spatial organization of the C. elegans germline, the length of individ-
ual zones corresponds to the time individual nuclei spend within each stage [11]. Therefore, 
the length of the transition zone within a gonad is a reliable metric to determine the timely 
completion of homologous chromosome pairing and synapsis that take place in this zone. In 
animals with mutations in genes involved in pairing or synapsis, the transition zone length is 
altered. For instance, in zim-2 mutant animals pairing, and consequently synapsis, of a single 
chromosome, namely chromosome V, is eliminated [17], while in syp-4 mutant animals, 
synapsis is completely abolished [18]. Despite being trained solely on nuclei of wild-type ger-
mlines, the Spherical Texture method predicts elongated transition zones for both zim-2 and 
syp-4 animals (Fig 5A).

With the Spherical Texture-based model, we can analyze meiotic progression across many 
different animals by automatically classifying all nuclei across many gonads allowing for 
automatic quantification of transition zone length (Fig 5B). Notably, we observe robust pro-
gression through the three zones which matches manual annotations. The machine-learning-
based prediction pinpoints not only the most probable position of the transition between 
zones but also illustrates the steepness of this transition. In wild-type animals, shifts between 
zones occur rapidly, while the progression from the transition zone to pachytene is more 
gradual in both mutant animals. As a result, the Spherical Texture method predicts an even 
longer transition zone for both mutants compared to our manual annotations.

Utilizing the Spherical Texture predictions along the length of the gonad offers a clear, 
highly informative, and easily interpretable representation of meiotic zones in C. elegans. This 
method allows for a consistent analysis of large datasets in a streamlined manner. Moreover, 
due to the model’s fast training speed, the Spherical Texture model can easily be adapted to 
other imaging modalities or experimental conditions.

2D texture and polarization quantification
Despite the popularity of 3D imaging, 2D imaging remains a prevalent and valuable tool for 
addressing various biological questions. Similar to 3D, patterning and the distribution of 
intensity across objects remain central features also in 2D. To analyze textures in 2D data with 
the Spherical Texture method, we can project the intensities within the convex region of an 
object to a circle instead of a sphere decomposing with a 1D Fourier transform (Fig 6A). This 
process results in a power spectrum of the projection, which yields a quantification depicting 
the contribution to variance per wavelength, where the area under the curve equals 1 when 
normalized to mean 0 and variance 1. When applied to 2D Perlin noise patterns correspond-
ing to the middle slices of the 3D synthetic data depicted in Fig 3A, a similar distribution of 
2D power spectra emerges, mirroring what we observed for 3D spherical data: the peak of the 
power spectrum moves from short wavelengths to longer wavelengths as the data becomes 
coarser (Fig 6B). Therefore, our Spherical Texture method efficiently quantifies textures not 
only in 3D but also 2D.

An application for employing this method in 2D is in quantifying actin dynamics during 
cell polarization. In such assays, cells polarize forming a distinct ‘leading edge’ characterized 
by actin-rich lamellipodia oriented towards the direction of movement. To precisely define the 
position of the leading edge, we utilize an optogenetic approach. Here, a photosensitive tag 
on the membrane anchor CAAX recruits TIAM, a Rac1-specific guanine nucleotide exchange 
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Fig 6.  Texture and polarization extraction of 2D data. A) Schematic of the Spherical Texture method for 2D data 
(top left) – the data is sampled per angle (top right) and projected as mean intensity to a 1D circle (S1 space, middle), 
and normalized to unit variance, mean 0. The contribution to variance per wavelength is then calculated through the 
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factor, upon light stimulation. With this setup, Rac1 can be activated at a specific site, thereby 
inducing leading edge formation at that exact site (Fig 6C and S2 Video) [19]. We quantify 
leading edge formation in this system by using the Spherical Texture method on the live-cell 
actin probe SiR-actin to visualize actin dynamics and polarization together with CAAX and 
TIAM.

In unstimulated cells, both TIAM (orange) and CAAX (blue) are randomly distributed 
across the cell (Fig 6D, 0 min). This random intensity distribution shows up as random fluc-
tuations in circular intensity projections (Fig 6E, 0 min), leading to an unstructured variance 
spectrum in the Spherical Texture quantification (Fig 6F, 0 min). Upon stimulation at 0 min, 
TIAM quickly accumulates at the activation site which is reflected by a higher contribution of 
larger wavelengths to the variance of the signal reflecting the coarsening in the distribution of 
the TIAM signal (Fig 6D-F, at 4 and 13 min). Interestingly, the CAAX signal also intensifies at 
the activation site and almost completely overlaps with the TIAM signal. This observation is 
intriguing because CAAX is not specifically recruited by light stimulation. We infer that this 
apparent accumulation is a consequence of membrane ruffling and lamellipodia formation. In 
the circular projection at minute 4, the signals of TIAM and CAAX overlap, while we observe 
that the actin intensity is only slightly increased at the activated site and is, instead, concen-
trated at the rear of the cell as it retracts. However, at minute 13 we observe a clear accumu-
lation of actin at the activation site in the circular projection, indicating the polarization of 
the cell.

To analyze this further, we measure the angle between the illumination and the polariza-
tion direction of the circular projections to evaluate the alignment of TIAM, CAAX, or actin 
relative to the illumination (Fig 6E). Assessing these angles across three cells over time reveals 
that TIAM aligns with the illumination almost immediately (time 0), and CAAX aligns within 
a few minutes until it is fully aligned about 10 minutes post-illumination (Fig 6F). By contrast, 
the angle between illumination and peak actin intensity remains large throughout the imaging 
time. However, upon closer examination, we find a bimodal distribution of the angles with 
some peak intensities located at the activation site while most cluster around π, indicating 
that actin accumulates both at the activation site and at the rear end opposite the activation 
site, as previously observed in the circular projections. A modest accumulation of actin at the 
site of illumination is consistent with induced Rac1-mediated branched actin polymerization 
and lamellipodia formation. We infer that the increase in actin seen at the opposite side of the 
cell is consistent with a restructuring of the cell membrane and morphological changes, as a 
migratory rear edge is formed, where the intensity subsequently diminishes over time.

Fourier power spectrum (bottom). The ‘peak direction’ (red arrow) denotes the angle of the maximum value in the 
projection. B) 2D Spherical Texture spectra for synthetic Perlin noise circles. The finer-detailed spectra have more 
power at short wavelengths, while the coarse spectra only have power at long wavelengths. C) Graphic depicting the 
optogenetic system for Rac1 activation [18]. The membrane anchor CAAX (blue) is tagged with the photosensitive 
domain iLiD, which – upon activation with 470 nm light – recruits TIAM-SSPB (orange). TIAM acts as a guanine 
nucleotide exchange factor for Rac1 (gray). The Rac1-GTP induces the formation of actin-rich lamellipodia (green). 
D) Fluorescence images with E) projections (same axis as A) and F) spectra of an illuminated cell. The illuminated 
region is shown in cyan. Three different time points are shown from left to right. As time post-illumination pro-
gresses, both the TIAM (orange) and CAAX (blue) align to the illumination. By contrast, actin (green) switches from 
a broader distribution to an almost bipolar distribution with peaks at the site of illumination, and directly opposite. 
These changes are also reflected in the spectra where TIAM and CAAX gain power at 1 rad/2π and actin at 0.5 rad/2π. 
G) The graphic illustrates the measurement of the angle to illumination, which denotes the shortest angle between the 
peak direction of individual channels and the peak of the illumination. Therefore, the maximum angle to illumination 
is π. H) Angle to illumination for all channels of three cells over time (illumination at 0 min). TIAM aligns imme-
diately to the illumination angle, while CAAX aligns slower. Actin splits into two populations: one aligned to the 
illumination, and one that aligns directly opposite the illumination reflecting its bipolar distribution.

https://doi.org/10.1371/journal.pcbi.1012349.g006

https://doi.org/10.1371/journal.pcbi.1012349.g006
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Discussion
Here, we presented a texture extraction method designed for the quantification and classifica-
tion of objects in microscopy images. This method efficiently extracts texture resolution from 
both 3D and 2D objects, operating under the observation that many biological objects can 
be described by angular intensity variations from their centroid within a convex region. Our 
study showcases the effectiveness of this technique for diverse applications ranging from pat-
tern recognition in 3D images of D. melanogaster embryos to the quantification of 3D nuclear 
morphology in C. elegans gonads. Furthermore, our texture analysis approach extends to 2D 
scenarios such as real-time images of migratory cells. When coupled with signal analysis and 
peak finding in circular projections, it provides a measure for cell polarization and migration 
direction.

The Spherical Texture method yields a reliable metric to quantify pattern formation in 
gene expression driven by the E3N enhancer in the Drosophila melanogaster embryo, which 
features a clear and predefined biological pattern. The rotationally invariant signal produced 
by the Spherical Texture method allows for robust and consistent quantification that is inde-
pendent of the orientation of the input image of the fly embryo. This independence of sample 
mounting on the quantification result makes the Spherical Texture method ideal for analysis of 
large-scale screens acquired by automated imaging.

On the other hand, nuclei in the distal C. elegans germline lack a predefined pattern but 
exhibit general differences in their morphology that is a consequence of differences in DNA 
condensation and nuclear organization. The Spherical Texture method extracts features based 
on their scale which allows for the robust classification of nuclei based on their morphology - 
a task that was previously only achievable by manual annotation. Therefore, the Spherical Tex-
ture method can be applied to both structured patterns such as patterning during Drosophila 
embryogenesis, and unpatterned data such as nuclear morphologies in the C. elegans germline 
highlighting its versatility.

To utilize the texture information obtained by our Spherical texture method for object 
classification, we integrated this tool into the easy-to-use interactive learning and segmenta-
tion software ilastik [4]. Employing Random Forests using features derived from the Spher-
ical Texture method to classify C. elegans nuclei demonstrated consistent performance and 
outperformed more complex CNNs in scenarios with sparse training data. Even with a dataset 
of over 1400 annotations, the CNN-based model only marginally surpasses the consistency of 
the Random Forest model. This is particularly relevant since microscopy datasets are highly 
specific to the lab, microscope, and experiment, necessitating frequent (re)training. Addition-
ally, the challenges of implementing a 3D CNN architecture require more expert knowledge 
and contrast with the ease of using a Random Forest, especially within software like ilastik.

The incorporation of the Spherical Texture method into ilastik also facilitates the seamless 
combination with other object quantification features. At the same time, the Spherical Texture 
method can be combined with other signal analysis techniques applied to the radial projec-
tions. This approach is demonstrated in the actin leading edge quantification. By applying 
peak-finding algorithms to the Spherical Texture output of a fluorescent image from a migra-
tory cell, we were able to measure cell polarization, extract the direction of migration, and 
quantify the relative intensity of the leading edge. This peak-finding feature in circular or 
spherical projections can be added to ilastik as a custom feature and can be used for both 2D 
and 3D data.

Thus, we show that Spherical Texture analysis is useful across scales ranging from the anal-
ysis of intracellular structures to cellular structures and whole organisms. This analysis is par-
ticularly useful when the differences between phenotypes mainly depend on the distribution 
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of the signal within objects. We, therefore, anticipate that our Spherical Texture method makes 
texture extraction easily accessible to users and allows for its application to diverse datasets.

Availability and Future Directions
The Spherical Texture method is included with the latest version of ilastik (https://www.ilastik.
org/download), starting at 1.4.1b19 [4]. Here, Spherical Textures is integrated into the ilastik 
Object Classification workflow, where users provide a 2- or 3D image and segmentation mask 
for which different features can be extracted (documentation: https://www.ilastik.org/docu-
mentation/objects/objects). The Spherical Texture spectrum and peak extraction can be easily 
selected by checking the relevant checkboxes. Within the software, users can then interactively 
train a Random Forest classifier to classify phenotypes based on the extracted features. The 
extracted features, including the Spherical Textures, can also be exported separately and used 
in subsequent custom analyses. The code is implemented in Python and accelerated with 
numba [20] with parallel computation of multiple objects. For users who want direct access 
to the code in Python, outside of the ilastik implementation, a Python package is installable 
through pip and conda as described on https://github.com/KoehlerLab/SphericalTexture. This 
Python API is particularly useful for users who want to add new spherical projections or adapt 
the pipeline to their specific needs.

Methods

Spherical Texture implementation
The Spherical Texture quantification requires either 3D z-stack or 2D image data and the cor-
responding segmentation masks where the centroid is inside the mask.

For each object in the segmentation mask, the image data is scaled bilinearly to 80x80x80 
px (or 80x80 px in 2D) and masked with the nearest-neighbor scaled segmentation mask. 
Spherical rays are taken from the centroid to angles fitting a Gauss-Legendre Quadrature [12]. 
This process yields a spherical projection of 251 by 512 rays. To obtain the value of a pixel in 
the spherical mean intensity projection, pixel intensities are averaged along each ray until it 
leaves the segmentation mask. Subsequently, the spherical projection map is normalized to 

achieve a mean of 0 and a variance of 1 using the formula F
F F

Fnorm =
−

δ 2
 , where F represents 

the angular mean intensity projection. The normalized signal is then decomposed into geod-
esy 4-pi normalized spherical harmonics using the SHTOOLS 4.10.3 [12] implementation of 
the Holmes and Featherstone algorithm [21]. Spectra are binned along a log2 scale to produce 
20 unique output values. Binning is performed through local integration to retain the area 
under the curve. Given that the mean of the signal is 0, the resulting spectrum can be inter-
preted as variance as a function of harmonic degree ℓ [12].

To map the harmonic degree ℓ to the approximate cartesian wavelength λ, we use the Jeans 

relation λ π
=

+( )
2

1

R

� �
 for the unit sphere with radius R = 1 [12]. This relation does not hold 

well for lower values of ℓ. To address this limitation, we set the cartesian wavelength λ = 1 for 
ℓ = 1, where the basis functions exhibit only one peak and one valley across the sphere. For ℓ 
values greater than 1, we rely on the Jeans relation for simplicity.

For two-dimensional data, we cast the rays only along the equator, resulting in a circular 
line comprising 251 values. This line is then decomposed using the discrete Fourier Trans-
form implementation available in scipy [22].

https://www.ilastik.org/download
https://www.ilastik.org/download
https://www.ilastik.org/documentation/objects/objects
https://www.ilastik.org/documentation/objects/objects
https://github.com/KoehlerLab/SphericalTexture
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Polarization directions are calculated from the angle of the maximum value in the projec-
tion. Depending on the data, it might be effective to first bandpass the signal.

Synthetic data
3D Perlin noise [23] was generated in 128x128x128 pixel grids using the perlin-numpy python 
implementation [24]. The noise scale parameter is the relative ‘periods of noise’ generated along 
each axis across the 128 grid. By design, Perlin noise periods are relatively arbitrary and do not 
decompose into clean waves. To obtain spherical synthetic data, we provided a central 80x80x80 
sphere or other shapes (see below) as a mask for unscaled data. To provide a wider range for 
scaling isotropically and anisotropically in S1B-C Fig, a 256x256x256 grid with a noise scale of 
25 was generated and cropped to a sphere of radius of 120 and then bilinearly rescaled to achieve 
the desired scales in the figures. For 2D synthetic data, only the middle plane was used.

Shapes used were spheres, cones (80 px diameter, 80 px height), and a star-like shape (S1A 
Fig, panel 3), which was created by rearranging octants of a sphere to form a pointed shape 
with concave edges. The star-like shape was chosen because it is particularly difficult to map 
back into a spherical space.

Fly strains, reporter gene expression staining and imaging
As previously described in Galupa et al. [14], a subset of 91 lines of the original 749 variants, 
ranging from 1-10 mutations, of the mutant library generated by Fuqua et al. [13] was used 
for this analysis. These transgenic Drosophila melanogaster lines were based on attP2 (Bloom-
ington Stock Number: 5905). Fly rearing, embryo collection and fixation, and immunofluo-
rescence was performed as described before [13,14]. Z-stacks of every embryo were acquired 
using a confocal Zeiss LSM 880 microscope at 0.593x0.593x1.40 µm pixel size using a 20x 0.8 
NA air plan-apochromatic objective.

Masks were created in the 2D maximum intensity projections of the data using the ‘cyto’ 
pretrained cellpose model with a target diameter of 600 pixels, corresponding to 356 µm 
[5,25]. These masks were then extended through the Z dimension.

Imaging of C. elegans germlines
To visualize C. elegans germline nuclei, young adult N2, CV87 [syp-4(tm2713)], or CA258 
[zim-2(tm574)] animals were dissected 24 hours post-L4 and stained with DAPI (Sigma-
Aldrich, D9542) as previously described [26,27]. Dissected gonads were mounted in ProLong 
Glass antifade mounting medium (Invitrogen, P36984). Images were acquired on an Olympus 
spinning disk confocal IXplore SpinSR system using a 60X 1.4 NA oil plan-apochromatic 
objective. High-resolution images for Figs 1B and 2 were acquired with a SoRa disk at a 
0.034x0.034x0.16 µm pixel size at 1.8 mW laser power, while all other images of germline 
nuclei were acquired with a 50 µm disk, a 0.108x0.108x0.2 µm pixel size, and, unless stated 
otherwise, 0.19 mW laser power.

Nuclei were segmented using a customized cellpose model (https://github.com/Koehler-
Lab/Cellpose_germlineNuclei/blob/main/Cellpose_germlineNuclei/cellpose_germlineNu-
clei_KoehlerLab) as previously described [28]. Regions containing distal germline nuclei from 
proliferative zone until the end of pachytene were manually annotated in Fiji [29], and only 
masks within this region were used in all downstream analyses.

Gonad linearization
Gonads were linearized by fitting a cubic spline to a LOWESS fit of the positions of segmented 
objects larger than 10 pixels in a manually annotated region of the gonad, excluding somatic 

https://github.com/KoehlerLab/Cellpose_germlineNuclei/blob/main/Cellpose_germlineNuclei/cellpose_germlineNuclei_KoehlerLab
https://github.com/KoehlerLab/Cellpose_germlineNuclei/blob/main/Cellpose_germlineNuclei/cellpose_germlineNuclei_KoehlerLab
https://github.com/KoehlerLab/Cellpose_germlineNuclei/blob/main/Cellpose_germlineNuclei/cellpose_germlineNuclei_KoehlerLab
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cells. Nuclei position along gonad length is defined as the point along the spline where the 
distance to the nucleus is minimal.

Manual annotation of C. elegans germline nuclei
1665 nuclei were annotated in 11 gonads of WT C. elegans in ilastik, without the feedback of 
the ilastik interactive labeling to not bias the cross-validation dataset. Nuclei of unclear phe-
notypes or nuclei with incorrect segmentations were ignored in the annotation.

ResNet implementation
A 3D-ResNet was constructed from the pytorch implementation of ResNet18 [15], by 

changing the 2D convolutions into 3D convolutions. To give it similar information as the Ran-
dom Forests, the data sent to the ResNet were masked segmented nuclei, normalized between 
-1 and 1, and 0-padded to the size of the largest nucleus. Thus, the relative size of individual 
nuclei is retained in the image data.

For Fig 4B, where almost the whole dataset was used in training, the models were trained 
for 100 epochs, with the accuracy saturating already at around 25 epochs. Therefore, all other 
models in Fig 4C were only trained for 25 epochs.

Random Forest models
To classify germline nuclei, we generated Random Forests using the default scikit-learn 
implementation [30] with 100 estimators. We used the 20-value Spherical Texture output and 
the size in pixels of each object (total number of pixels) for the Spherical Texture model, or a 
64-value normalized histogram as is the default in ilastik and the size in pixels of each object 
for the Histogram of intensities model as features.

Photoactivation
HT1080 fibrosarcoma cells (ATCC) were cultured in DMEM supplemented with 10% FBS 
and 50 µg/ml penicillin/streptomycin at 37°C in 5% CO2. A stable cell line for optogenetic 
TIAM recruitment was produced using lentiviral transduction. pLenti-TIAM-tagRFP-SSPB-
P2A-mVenus-iLID-CAAX was used for production (a gift from M. Coppey).

Lentivirus were produced by transfecting 10 cm dishes of HEK293T cells with 15µg pLenti 
construct, 10 µg psPAX2 lentivirus packaging plasmid (a gift from Didier Trono, Addgene 
#12260) and 5 µg lentivirus envelope plasmid (a gift from Didier Trono, Addgene #12259) with 
90 µL 1 mg/mL MaxPEI. 24 and 48 hours following transfection, viral supernatant was har-
vested, filtered with a 0.45 µm syringe filter, and precipitated in 1X virus precipitation solution 
(from 5X solution: 66.6 mM PEG 6000, 410 mM NaCl, in ddH2O, pH 7.2). Following storage 
at 4°C for 24 hours, the viral supernatant was centrifuged for 30 min at 1500 x g at 4°C, and the 
virus pellet was resuspended in 1X PBS for long term storage at -80°C. Wild-type HT1080 cells 
were used as a target for lentiviral transduction. 24 h prior to transduction, HT1080 cells were 
seeded to a 24-well plate. On the day of transduction, the medium was refreshed with com-
plete medium with 5 µg/mL polybrene, and 5 µL viral suspension was added. The medium was 
refreshed after 24 hours, and cells were selected in complete medium with 20 µg/mL blasticidin.

18 hours prior to imaging, cells were plated on 25 mm coverslips and incubated with 10 nM 
SiR-actin in complete medium. Epifluorescent images with photostimulation were acquired 
using a Nikon Ti inverted microscope equipped with a 40× (Plan Fluor, NA 1.3) oil objective, 
sample incubator (Tokai-Hit), ET 514-nm Laser Bandpass (49905), ET-mCherry (49008) and 
ET-Cy5 (49006) filter cubes (all Chroma), pco.edge cooled sCMOS camera (Excelitas), and 
a Polygon 400 digital mirror device (Mightex). µManager 1.4 [31] was used for controlling 
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the microscope, and Polyscan 2 (Mightex) was used for light patterns. Light exposure was 
synchronized with camera frames using camera-evoked TTL triggers. Cells were imaged with 
a 15 s interval and stimulated in a local region of interest with 2 mW/cm2 470 nm LED (Migh-
tex) between imaging frames.

Supporting information
S1 Fig.  Spherical Texture quantification of test patterns. A) Spherical Texture quantification 
of differently shaped objects, filled with identical 3D test patterns at different scales, shows 
that the Spherical Texture quantification is internally consistent within the same shapes and 
comparable to other similar shapes. Insets: Mask shapes are shown as 3D surface renders. B) 
Spherical Texture quantifications of objects scaled to different sizes reflect the changes in the 
3D pattern scale. The scales are given relative to the 80-pixel scaling used in the Spherical Tex-
ture quantification. C) The Spherical Texture quantification is robust against rescaling a single 
axis of objects to simulate anisotropic sampling and only shows a small loss in quality. D) Syn-
thetic patterns clipped to different distances from the center of the object show that a pattern 
in the Spherical Texture will appear coarser if it is located closer to the center of the object.
(TIF)

S2 Fig.  Spherical Textures to quantify C. elegans germline nuclei. A) Two wild-type C. ele-
gans datasets with different noise levels, acquired using different laser power (wattage deliv-
ered into the objective is given). B) Spherical Texture quantification of manually classified C. 
elegans nuclei in the two datasets acquired with different laser power. Here we see that large-
scale (high wavelength) features remain, while smaller details (low wavelength) are noise-
dependent. C) The average number of nuclei included for subsetting the C. elegans germline 
nucleus training dataset depicted in Fig 4C.
(TIF)

S3 Fig.  High-resolution images of C. elegans germlines shown in Fig. 5A for representative 
images from three genotypes (Wild-type, zim-2, syp-4) with manually annotated zones 
(top) and automatic classifications of nuclear morphology using the Spherical Texture 
Random Forest model per nucleus (bottom). 
(TIF)

S1 Video.  Illustration of the method showing the analysis of a single C. elegans nucleus to 
the Spherical Texture spectrum. 
(MP4)

S2 Video.  Video of photoactivation of a fibrosarcoma cell with quantification. A) Flu-
orescence video of TIAM-SSPB channel. B) Fluorescence video of iLiD-CAAX channel. C) 
Fluorescence video of SiR-actin channel. D) Normalized angular intensity of all channels. E) 
Spherical Texture spectrum of all channels.
(MP4)
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